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Abstract: The linear regulator problem for delay equation is

discussed. We propose a (theoretical) solution involving Riccati

integral equations and then axiomatically discuss a general

approximation scheme. The details are given for spline-and

averaging approximations.
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1. Introduction and Notation

The problem of approximating delay-differential equations by

sequences of either ordinary differential equations or algebraic

equations has stimulated research for over fifteen years now.

However, it was not until quite recently that convergence proofs in

an operator-theoretic framework were given: see [1] and the

references given there.

In this paper we address a specific problem of the above type,

namely the approximation of the regulator problem of minimizing a

quadratic cost-functional subject to a delay-or more generally a

functional differential equation (FDE). This question also has

attracted attention for quite some time I4 [13,151 Ross and

Flugge-Lotz and Solimon and Ray specify certain approximation schemes

leaving open the question of convergence. In today's terminology

their methods would be called averaging projections or linear inter-

polating spline scheme (1,81. Not only does the question of approxima-

tion of the linear-quadratic control problem for (FDE) present

difficulties, but the theoretic development of existence of solutions,

deriving a feedback law and discussing an operator Riccati equation

is challenging as well. Delfour treats these theoretic aspects

in (4,S) and proves convergence of the averaging scheme, discretizing

space and time variables. We also refer to [5] as a reference on

the literature to the linear-quadratic optimal control problem for

(FDE) up to (1977).

In the present paper we develop a general theory for the

above mentioned problem, which we subsequently apply to the spline and

* - - ~ - .--- --- ----- a
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averaging approximation schemes. The theoretical aspects are greatly

facilitated by a recent paper of Gibson [6] in which an abstract

linear-quadratic optimal control problem is treated in a general

Hilbert space; it was observed that the Riccati-operators satisfy

two (almost) equivalent Riccati integral equations, one of which

coincides with the one used by Delfour in [5], the other one ((2.17)

in this paper), although implicitly present, was not dealt with in [5].

It should be noted that in our presentation the treatment of the

original problem (as opposed to the approximating ones) is based

solely on integral equations. A second important feature is that

we avoid using the infinitesimal generator of the adjoint of the

solution semigroup associated with the (FDE). All the estimates

depend heavily on the fact that even in the abstract formulation of

the (FDE) (see (2.4)), the control term enters only as an operator

with finite dimensional range.

Many of the technicalities here arise from the fact that we

intend to not only prove convergence of optimal controls, trajectories,

payoffs etc., but also want to give some error bounds. This leads

to an essential difficulty which is described at length in Remark 2.1.

The paper is organized in the following way. Section 2

contains the statement of the problem and its (theoretical) solution.

Then a sequence of approximating problems is specified and the

convergence results are stated, leaving technical proofs to Section 5.

In Section 3, we first show how the results of Section 2 can be used

for spline approximation schemes. For linear and cubic splines we

give all the details, demonstrating convergence of the linear spline

scheme and quadratic convergence on certain subspaces of the cubic
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spline scheme. Averaging projection schemes are discussed in

Section 4; the approximating equations in this case turn out to

coincide with those proposed in [2], [13] and [15].

Most of the notation that is used throughout the paper is quite standard.

For a closed interval Ic a Banach space X with norm I.IX and p > 1,

the equivalence class of measurable functions x: I - X with

IJlx(s)lds < is denoted by LP(I;X). 'LI or simply

LP is the notation for the usual norm in LP(I;X). The space of

continuous functions on I with values in X endowed with the

supremum norm is denoted by C(I;X) and Ck(I;X), k = 1,2,...

stands for the space of X-valued continuous functions which possess

k continuous derivatives on I. Wk' 2 (I;X), k = 1,2,... is the space

of (k-l)-times continuously differentiable functions whose (k-l)-st

derivative is absolutely continuous with derivative in

L 2 (.I;X); LI k,2  denotes any one of the commonly employed

wk,2-norms. The space of all essentially bounded and strongly

measurable functions from I to X is denoted by Q(I;X). In the

special case of I = [-r,O], 0 < r < - and X =1Wn we shall

abbreviate the notation of the function spaces by L2,Ck,Wk, 2 , etc.

For Banach spaces X and Y, the set of all bounded linear

operators from X to Y is denoted by Y(X,Y) and for YOR n NR

we simply write IRn . For A E .Y(X,Y) the strong operator-norm

is denoted by IIAII. A* stands for the Hilbert space-adjoint
.V(X,Y)

of an operator A from a Hilbert space H to H. Itn is endowed

with the euclidean norm 1in and (',") stands for the usual
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inner product in An. For elements in IRnm we use the spectral

norm. Wherever the contents permits we drop the subscript of a

norm, simply using for the norm of elements of a Banach space

and ' for that of operators between Banach spaces.

The state space of our presentation will be Rn x L2 (-r,O n)

with the norm

I~~n, ~ )l : I l P(S)l*(s)l2 1/

where the weighting function P: [-r,O -IR is a piecewise con-

tinuous and positive function. We denote by Z (or Z0 where

necessary) the space IRn x L2 (.r,ORn) together with the weighted

norm. The symbol <-,-> stands for the natural inner product in Z

and Pit P2 denote the projections of Z onto its first and second

components respectively. _,k and Wk,2 stand for subspaces of Z

given by (((O),O)J * E ck } and (((O),)JI E W '  respectively.

A family V(t,s) of operators in Y(Z,Z) with t < s < t < t

is called evolution operator if V(s,s)z = z, if V(t,s)z = V(t,r)V(r,s)z

and if t -o V(t,s)z is continuous for all z 6 Z and

to < s < r < t < t The derivative of a function x is denoted by

i or also x', and, finally, for x: [-r,Q) ,1]n, a > 0, the symbol

xt , 0 < t < a stands for the function (-r,O] * X given by

xt(s) - x(t+s) for s E [-r,O].

Acknowledgement:

The author would like to thank Professor H, T, Banks for

encouragement to work on this problem and for various stimulating

discussions.
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2. Approximation of the Linear-Quadratic Control Problem

For Cnq) = z E Z and (to0 t*) E R x JR we consider the

functional differential equation (FDE)

(.t) = L(t,xt) + f(t), for to < s < t < t*
(2.1)

X S) =n, xs  =

where

t0
(2.2) L(t,) = A.(t)O(-ri) + (t,s)(s)dsi=0 f- 1

Here we let 0 = r0 < rI < ... < r. = r and the matrix-valued

functions Ai, for i = -l,..., are considered as operators in

Ai E C(t0 ,t *nxn), for i = 0,...,L. aid A I E C(t0 ,t*;L 2 (-r,ORnXn))

respectively, and £ E L2 t0,t *;Rn).

We also need to restrict our attention to the homogeneous

problem

<rCt) = L(t,xt), for to < s < t < t*

(2.3) I
xCs) - n, Xs

It is quite well known [8] that solutions to (2.1) and (2.3) exist

and that they do not depend on 'the representation of an equivalence

class 4 E L2 . We shall denote the solutions by x(.,s;z,f)

and x(.,s;z) respectively, dropping arguments if the context

permits us to do so. Let T(t,s): Z 4 Z be the solution operator
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associated with (2.3), i.e.

T(t,s)z = ((x(t,s;z),xt(.,s;z)) for t0 < s < t < t*.

Then T(t,s) is an evolution operator on A = {(t,s)I t 0 < s < t < t*}.

In the next lemma the weighting function for the norm of Z

is chosen identically 1.

Lemma 2.1. Exponential bounds on T(t,s) are given by

IT(t,s)zlz- < Me'(t-S)IZlZl for (t,s) E A,

where

M = + sup*I IAi~ t ) 1/

i=l tE[t 0 ,t J

and

w = M2 + sup * I-IA_ 1 (t,.)Il,
tqt 0 ,t -

with A-l(t,) considered as an element in L2 (-r,ORnxn)

For the proof see [12, Theorems 2.1 and 3.5],

We return to (2.1) and recall the following variation of

constants formula.

. . . . I- n
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Lemma 2.2. If for z0 E Z we define z(t,s;z 0)E Z by

z(t,s;z0 ) = x(t,s;z0 ,f), xtt(l,s;zo,f)) for (t,s) E A

then

(2.4) z(t,s;z 0) T(t,s)z 0 + JtT(t,a)(f(T),0)dT. for (t,s) E A.

This result is proved in [112] and in the autonomous case it also

follows trivially from [1], [3], [9].

In this paper, we shall consider the following optimal control

problem:

Find u E L2 (tt * ;am) which minimizes

J(too,),,u) = (Fx(t*),x(t*)n + It (D(t)x(t),x(t)) n dt
A to JR

()+ ft(C()())) mdt

subject to

k(t) L~t,x) + BMtUMt) to t < t *

x(t0 ) n= tI, W f, where (ri,*) E Z and toot are given.

In the notation of the cost functional J we let x(t) stand

for x(t,to;n,f,B(t)u(t)). The assumptions on F,D,C and B are

the following:
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F E .QRn1R n ), selfadjoint,nonnegative,

D E -t 0 ,t*nxn), selfadjoint, nonnegative,am V

(2.5) C E - 0tott*JRmXm), selfadjoint, C(t) > c > 0

for some c > 0 and almost all t,

B E , Cto,t*Rmn).

For the presentation of the approximation results we choose a

sequence of closed linear subspaces {ZN})N=l of Z and orthogonal

projections

pN: Z + ZN for N = 1,2,...

We shall also use the operator Q0 : Rn Z given by

Q0n = (n,0).

Of course, QO can be represented as an n x n - Z-valued matrix by

(1,0) 0
Q0 a

0 1,)

where 0 stands for the zero-element in Z. In general, we shall not

distinguish between the operator Q0  and its representation. WithIt
this notation (2.4) can be written z(t,s;z0) - T(t,s)z0 + T(t,o)Qof(a)d.

Ms
Mtivated by earlier work on approximation of (FDE) (1,3,8] we may
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impose the following hypotheses:

(HI) There exists a family of evolution operators T N(t,s): Z Z,

for N = 1,2,... and (t,s) E & such that

(i) IIT N(t,s) H < MeZ (t-s) for some M > 0, 9 E IR,

(ii) TN(t,s)ZN c ZN  for all (t,s) E A,

(iii) there exists a real-valued function T such that

IT(t,s)z - TN(t,s)zl < T(N,z).

Of course in the examples that we have in mind T will tend to 0

at a certain rate as N goes to -; the dependence of T on z

will also indicate possible dependence on derivatives of z (compare

Section 3).

(H2) lim PNz = z for all z E Z.
N-+

To get estimates on the rate of convergence we need to introduce

a family of operators QN: n - Z, which act as"smoothing operators"

for Q0.

(H3) There exists a sequence of operators Q IRn -. Z, N = 1,2,...,

such that

(i) Qjn ZN

(ii) IIQN-Q 0 11 n;Z) PQ(N) for some real-valued

function PQ
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(iii) 1QN11 n < q for some q > 1,
YORn; Z)

independent of N.

Throughout this section we assume (Hl)-(H3) to hold. A possible

candidate for QN is the matrix whose columns are the orthogonal

projections of the columns of Q0 onto ZN. Notice that (H3)(i)

implies that there exist a matrix QNE YVORnlRn) and a function-

valued matrix Q1E 2(-r,0;Rnn such that ((QN)j9(Q) E ZN

for j = l,...,n, where (E)i  stands for the j th column of a

matrix E. In the examples that we have in mind QN can always be

chosen as a diagonal matrix, with diagonal elements in IR x L2 (-r,0]R)

approximating (1,0) E R x L2(-r,0;IR). The need for introducing the

family QN to obtainestimates on the rate of convergence will become

apparent from the analysis below. The underlying problem, however,

can be explained for real-valued functions on [-1,0].

Remark 2.1. To demonstrate the need for introducing the family of

operators Q let g0  [-1,0] E]R be given by

for s = 0
g0 (s) to 1 for s E [-1,0).

It is not hard to find a sequence of functions gN: [-1,0] -1R, such

that gN(0) - 1, (0) gNIL2 0-O)T for some P > 0, (y) gN E

W1'2(-1,01;) and C6) MANL1 M for some M1  independent of N.

In fact, we may take
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f Nt + 1 for t E [ ,OJ
gN(t) = 0 otherwise

however, IknL 2 diverges like A1. For functions in W2'2 (-l,0R)
L

we analyze the question more precisely: there exists no family of

functions {gN1 such that

(i) ir gNCO) 1, for all N

N

(ii) lir IgNI 2 0, for some P > 0
(2.7) N L

(2.7) (ii ) gN E W2'2(-I'0O R

(iv) INIL 2 < M1  and INIL2 < M2, both uniformly in N.

Proof. Assuming (i)-(iii), we argue that (iv) cannot hold. We first

show that lim gN(-1) = 0. For suppose there exists a subsequence,
N

again denoted by gN such that gN(-1) > a > 0, for all N. (The

case a < 0 is treated similarly.) Then

gN(E-l) = gN(-1) + J1  N(s)ds > a -r M1 .

Therefore, there exists c > 0 and & > 0 such that gN(-l) > • 0

for all N and c E (0,c0]. This contradicts (ii). Next, we

verify that lim WN(-) = 0. If not, there exists a subsequence,
N

again denoted by gN such that AN"-) > > 0, for all N; (the

case i < 0 is treated similarly). Then

N(E1) a g1N(-l) + E§N(l) + fJ1 (E-l-S)IN(s)ds > gN(-l) + e6-M2 /),
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so that there exist constants E0 > 0 and k > 0 such that gN(e-l) > gN(-l) + ek,

for all N and e E[0, 01, which again contradicts (ii). In a

similar way one can show that lim AN(0) =. Since the left-hand-
N

side in the next estimate tends to

190(0) - N(-')I <_ 1 iNCS) 12d

we see that (iv) is violated and hence the proof of the above claim

is completed.

There is yet another way of considering properties (i)-(iv),

interesting from the point of view of spline analysis. We let

sN E W2(-1,0R) denote the unique cubic Hermite spline function

given by

(t N )  SNt.) 0 for j - 2,... ,N

N  .(2.8) --ti o , -- 1  =,

N0) = 1, (0) =a,

Nfor a partition t. N = 0,...,N of [-1,0]. A simple

calculation shows that

[(-2N3 + (a+B)N 2)t 3 + (2aN + ON - 3N2)t 2 + at + 1 for t E [t N,0]

gN(t)

t0 otherwise.

We recall that the variational problem of finding the function

v E w2 2(-I,0 M) satisfying (2.8) and minimizing V~I 2  is exactly

the cubic Hermite spline "SN; but I-jNj2 diverges like N312. Of

course, a similar negative result can be shown for cubic spline functions.

.No.
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To relate the above observations to the operator Q0 we suppose r = n = 1 and

ZN a {( (O), )J 4 E W2 ' 2 (-1,0)). Then we have demonstrated that there does not

exist a sequence of operators Q N : Z such that lim I iQo-0 YWZ) = 0 and

suhta pN 2l'( N N 2_, ) rsuch that II d(P 2 Q )I IY ,L2(l,0)) and i d(P 2 Q )I I.V,L2(l,0)) are

uniformly bounded in N ; here d denotes the differentiation operator.

To explain the significance of the above negative result, we

recall that in order to get good convergence results in spline

analysis, the (L2-and Tschebyscheff-norm of the) derivatives of the

approximated function play an essential role [11,14]. In the next

section we shall apply the general result of this section to specific

spline approximation schemes, and it is no surprise that again the

convergence of TN(t,s)z to T(t,s)z depends on the smoothness

of z, (see [3]). A brief look at (2.4) indicates that this will cause

severe difficulties, since under the integral the operator T(t,s)

always acts on a discontinuous function. The special form of the

integral will help to get the convergence result. But for estimates

of the rate of convergence of control, state, payoff and Riccati

N
operator, certain uniformities in the convergence of Q to Q0 would

be needed, which for cubic spline approximations turn out to be those

given in (2.7).

To get better results than just convergence, in spite of the

above difficulties, we shall use the following simple technique,

which we explain by using go: For some desired accurracy E determine

a function N (Q or PNQo later on in this paper) such that

gNCO) - 1 and 1NIL 2 . .S Moreover, gN will be chosen in such a way

that it suits our smoothness requirements for the specific situation

and such that there exists a sequence of functions g1, whoseN hs
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convergence to 9N is of a desired rate. This ends Remark 2.1.

We return to the development of the theory begun Prior to this long

remark and aim at an "abstract" formulation in the space Z of

problem (P). We shall need the operators _q and

E tj~t t;-Y(cRmZ)) -9 and Op -,t0 t;.Y(Z,Z)) and -9

and yrN E .-'(Z,Z) given by

-q(t) =Q 0B(t) and -4 (t) = Q NB(t),

=(F(n),0) for (11,0) E Z and FN = NWN

N N N(D(t)(n),0) for (ii,O) E Z and (t) - P N9(t)P

Lemma 2.3. The operators and _4,_ and -9 I and FN

satisfy the same properties as B,D and F in (2.5) respectively.

Moreover,

~~~ ()r,) B(t)rI, for (rj,O) E Z and t0 f t < t *

Ow N (t)(,O) B (t)(Q N * + B()QN ()~~s

f-r

and

-QN and -Q* E l(,R)

Proof. We shall only verify the representation of (~).So let

v £ IR , and (ui,f) E Z be arbitrary, then
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< N Nv,(nO)> =QNB~t)v,)n + fO (QN(s)B(t)v,O(s)) mds< v'n0) = QBtvnIRn + -

= ) m + r(VB(t)(QN) (s)O(s)) mds
IR -rR

= (v,B *(t)[(QN)*n + N(QN)* (s)O(s)])
0 -r 1m '

Next we introduce the family of approximating optimal control

problems in which the original problem (9)is imbedded. Let

T 0(t,s) = T(t,s), P0 = I, -0 t) = _q(t),Q 0 = Q0'

9 0 = - and F0

and consider

For t0 E IR, t" ER and z E Z given, minimize

J (t 0 , P~N+ z,u) = <FN4 zN,(t*),zN' (t*)> +

+ t + Jt(<qN4 (t)zN , ), (t), zN,11 (t)>dt + (C(t)u(t) ,u(t)))dt

over u E L 2(to,t*' R) subject to

(.2,9) zN'p(t) - TN4(t,t 0 )PN+ z + -ftTN41(t, n)_N(Tn)u(n)dn
to0

for t o 5 t < t*.

For v = N - 0 and by Lenla 2.2 we have (30 (). We first address ourselves
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to solving N N, 0,1,... and to the question of the

behavior of the solution of (3N,ji) as N,P - -. Problems (9 N, ) are

special cases of the linear quadratic optimal control problem considered

in [6]. Applying this result we outline the solution of (gN 1).

Under the assumptions on F,D and C the unique optimal controls

are the solutions of

J(t 0 ,PN+z(t 0 ),u)v = 0, for all v E L2 (t0,t* ;Rm),

where

j' (t 0 , PN+pz (t 0 ) ,u)v

denotes the Fr6chet-derivative of j at u in the direction v.

Therefore, after some calculations one finds that the optimal controls

iN,p are given by

(2.10) N'A(t) = t W' z)(t) a.e. in [t 0 ,t* ]

where

vN t C .V(L2(t0,t*;Om) L2(t0,t* )

and

W N~jj E £(Z,L2 (t 0 ,t* 1m))to

and
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(2.11) VN', V + ( qN* 9 N+Iv N+vq-N+114N
oG to to

+ (N)*(qrN+P)* N+P g-N~ _qN.t 0t0

(2.12) W Nol (N) (N)*_9WJI*T~N+1J + (-_ N) * (YN+IJ*F N+ T N+T(*
o 0 t0 to0't)

Here

5rNVE Y(fL 2 ( t * ;Z),Z *

to0

(S S 0 IN40A(s,nrO( NO, for E L L2(t0,t ;Z)

0 0

N+'Nv

U9 fM "f J(7N)(n~t)O(ndn,

N+PI
(Ut0)*i)) (9 4+)*(t*,t)iZ, for i Z

(1 1i) (t) - N" t
t00

Consider for a moment the optimal control problems (g N1J with

i~opNj ,u) relcdb ~,Nt ,u ), to fS<t; letting
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UN,1J denote the corresponding optimal control, then it is clear

from the above that

,~N, iiN,i -I N, upN+oz( ) ae n [ *

(2.13) (us ' )(t) = -((Vs'W s z)(t) a.e. in [st*,

if VN '  E -V(L 2 (s,t*m) L2 (st*Rm)) and WN 'u E V(ZL 2 (s,t*.JFm))
s 5

are defined analogously to VN '1 and WNli in (2.11) and (2.12)t 0 to
respectively. For z E Z the optimal trajectories sN'I(t,s)z

corresponding to J(s,PN+p z,u) are then given by

(2.14) sNIu(t,s)pN+z = TN+,(t,s)pN+1z

f ftTN+vl (t,)q) N (n)((V N 'VL) - WN , v P N +P z ) (n)dn.

In [61 it is verified that sN'(t,s) is an evolution operator on A

for each N,p and moreover that aN,p is also given by

(2.15) iN'p(t) = _-1 (t)(N(t))*u NN(t)sN'p(t,t0)pN+,z, a.e.,

with

(2.16) INp(t)pN+uz (T N+()*t*,t)FN uSN'u(t*,t)P N+z +

+ jt NT +P* I t N. I ( ) N p n t p + z n
ft

for to < t < t, z E Z.

The basis for the numerical approximation scheme will be (2.10) and

(2.14) together with the following Riccati integral equation for RN,.
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(2.17) 0,1tp+l = (TN+WI* (t* t)N+1 *,t N~+i

+ fJt* 1+11) * (n, t) [9(nI)

Since Z is separable, so that T*(.,.) is strongly measurable,

(2.17) is also a direct consequence of the results in [6]; moreover

H NP (t) is nonnegative and selfadjoint.

To establish the approximation results we adopt the following

conventions:

(i) 0 as a superscript may be dropped,

(ii) b * sup * BtH

(iii) c - sup HIc(t)H,'
tC[t0,t

(iv) d - sup HID(t)HI,
tqt 0 ,t

(v) f - IFiI Z)
.Y( Z,Z

(vi) we assume that M < 9T, w<

(vii) by (Hl)(i), (Mi) there exists a real-valued function P

such that



20

IT(t,s)z - T N(t,s)P NI z P(N,z), uniformly in A;

indeed P(N,z) = T(N,z) + Me t* 0  IpNz~zI,

(viii) by (H1)(.iii) there exists a real valued function such

that

JI~tsQ TNji(~sQN 1YO Z) PNN

indeed one can let

414+N,QN)= A max -NNQOi(l

(ix) the constants K.i to be used below depend on the following

variables of(N1)

K.i = Ki(nA.,f,dyb,c,qqtOt)

and are calculated explicitly in the proofs.

Lemma 2.4.

() JWt0 .-9(Z;C(t 0,t * Rm) M : e(dt-o + f) K V

(b) II(VN") 11H 2 2<
t0 V,(L (t0,t .,1 )pL (topt A m ))

(c) There exist constants K 2  and K 3  such that for all

zE Z
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sup * I(Wt Z)(t) - (W N uP Nuz)(0)I <-
tE[t 0 ,t t 0 to0

< P Q(N)I z Ik 1 + (N-i.-Qe) I z 1F2 + P(+1z

+ I IPN+P.Q, - 0 11 1 zlk 2

where

b/n e" 2(t -t 0 )[(2'w) d+f]

k bq/-n- M2 e t 0 ) [d(t* -t0) (2 1 + fl.

(d) There exists a constant K 4  such that for all

w E L 2 (t0,t * IRm),

sup t(CVt t))t0  0N~ L2  K1

+ 11 Qo-PUQo11k4 wl 2 0

where

.k 3 b b2 A vg 2(1+q)e27w(t -to) +__

and

k n 22 i~ 0(t)[(f + Ct*t)1J + (t*-t0)/2

4 n qe _t)1/21+ d
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Remark 2.2. It is simple to check that the same estimates as in the

previous lemma also hold for V E L2(st*,m), L2(St* s

and WNP E .V(Z,L 2 (st* RM)), for s E [to,t*]

Theorem 2.1. For the optimal controls dN, P and 6 we have the

following L-convergence result:

i-iNP I L2 (t 0,t,.1m) < c-(t*-to) 1/2 [PQ(N)IzIkl + (N+P,QN )IzIK 2

P(N+ij,z) 3 + IjpN+Q o-Q01.1 Izk21 + c-2(t*- to)Kllz[P Q(N)k3

+ (N+1,QN)K 4 + lIQ0-PN+ Q0Ilk4 ].

Proof. The proof, using Lemma 2.4, follows from the following simple

estimate

-fjN~u 2U IVJlt z _ (VNI)lIN,1IpN+pIz
U L 0 0o t to ZIL2

v-l z V- V1WNp PN+ zIL2 + Ivt0I" l'PN+I'z - (VNt0)-IWN2pN+vZ2
0 O~ o to o L2 0 0t0 t0 L2

1 z~ _ -WN,IpN4Vzl + j(N,ii)-l(V _VN~w)( )-lWN,lPPN+vz Lc to 2 o to to to to IL2

< c-lWto z _ ",,ppIzl 2 +
0 %L

c-2 11t0 -t o 0.1 (L 2(t0,t*e m) , L 2 ( t 0 , t * .e ) ) Kl ( t ' t o ) l 2 W•

Remark 2.4. Although it is not difficult to show that the controls

a N,; N,vt - 0,1,... are continuous, if B(') and C(.) are and that

VNp is invertible in -V (C(t0 ,t*IXm), C(t0 t *lXm)) it does not seem

. . . . . . . . . I .
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possible to find a uniform bound on 11 [ yN'")- I.V(C(t't* -e) ,C(t 0 ,t* 1-)

We shall, however, consider the question of uniform convergence of

the controls in Theorem 2.4.

Remark 2.4. The use of Theorem 2.1 will be demonstrated for the case

where the subspaces ZN are chosen as subspaces of spline functions,

for example. Then, if one is merely interested in convergence of the

optimal controls aN,o one may put P = 0 and Theorem 2.1 will

guarantee L-convergence of jN,0 to a. However, if the initial data z E Z are

picked sufficiently smooth one would expect to find higher order

estimates on the rate of convergence. Unfortunately even for smooth

initial data, one still has to deal with the "jump" operator Q0  used

in the variation-of-constants formula (compare (2.4) and (N,1)):

given any e > 0 one can determine N > 0, such that for all

11= 1,Z,...

11Q 0-Q N1[c -(t*-t 0)1/2[ztk 1 + c-2(t*-to)Kl[zlk 31

+ IIpN+,Qo-Q0 Hl[c-l(t*-to)i/2 ztk 2 + c-2(t*-to)Kllzlk 4I < E.

Fixing N, Theorem 2.1 guarantees that the optimal controls converge

at a rate given by (N+p,Q ) and p(N+V,z) into the c-bound as

PJ 4 M.

Remark 2.5. It can be seen easily that Theorem 2.1 remains true if

aN,u and u are replaced by a' and Us as defined in (2.13).

'V -

-Ow
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For the optimal trajectories S(t,s)z, with (t,s) E A, we have the

following estimate.

Theorem 2.2.

(a) There exists a constant K5 , independent of N and PJ,

such that

Is NP (t,s)P N+p zI f K5 JzJ for all (t,s) E A and

and PJ, N = 0,1,2,....

(b) There exists a constant K 6  such that

IS(t,s)z - sN~ ~l(,)P Nn zI < P(+~)+ (N+ti,Q N )zIK 6

+4 LU L2 k5 +~ IZIP Q(N)k 6 P

where

k5 b(L-(e 29t lt))lM /2

k6 bc K 1 (t t 0/
2 M(l (e ))' 2

Theorem 2.3. For all z E Z and t E [t0,t]

(a) ItH N p (t)P N+11JzII < Me (tt) OK5zI (f+d(t*-t0 )).

(b) <IT(t)z H N,1I(t) zN 1+,y> < (d(t*_t0) + f){T(N-,u,y)IzIK 5

+ 9a1e 01O)y11P(N+P,z) + IzIP(N.14,Q N)K 6 +

+ a_5jNII L 2 k5 + fZIP Q(N)k6 + IzIKSIIO-PNPQoIII1,

for all y EZ.



25

For p = 0 we have the following corollary to Theorem 2.1-2.3.

Corollary 2.1. There exist constants K7 ,K8 ,K9 such that

(a) 1. N,L (t<t*R m ) K7 [(N,Q0 )IzI + p(N,z) + PQ(N)Iz[],

(b) IS(t,s)z - SNO(t,s)pNzl < K 8 [(N,Q0 )JzI + p(N,z) + PQ(N)JzJJ,

(c) <H(t)z - ITNOpNzy> < Kg[P(N,y)IzI + P(N,z)IyI

+ IYIIZI(PQ(N) + CN,Q))].

Proof. By Theorem 2.1 we have

(2.18) - N, ° L(t0 t*e) < K7[PQ(N)IzI+ (N,QN)Izl + p(N,z) + IIpNQ - Q011 IzIl.

Since QRn C ZN and since PN is an orthogonal projection,

[pNQ n -Q~n < 1[QN _ Q0 11 InI for all n, which implies that

(2.19) Q1[NQ0 Qo11 < pQ(N).

Also, for (t,s) E A we find

(2.20) (N,QN ) N JjT(t,s)(Q N-Q0 )II + f(T(t,s) - T N(ts))Q011 +

+ JITN(t,s)(Q 0 -QN )II 2f e(tS)P Q(N) + (N,Q0).

Estimates (2.18)-(2.20) imply (a). Similar calculations prove (b)

and (c).



26

Corollary 2.2. For the payoff ,J the following estimate holds:

lJ(tP N+Az, N,1 ) - J(t 0,z,iul <

<1[(t t0)d + f]KsIzj{2[P(N+u,z) + (N+i,QN)IzIK6 + lu-uIN IZIPQ(N)k61 +

+ IIpN+OQ0 - QoIIKSIzl} + 2 -N q LzKlc-l(t *t0)l/ 2supIC(t)lfz.

Finally, we discuss the convergence of jN, to u in the supremum-norm.

For the sake of a simpler representation we restrict our attention to

the case P = 0.

Theorem 2.4. If for all z E Z, lim T(N,z) = 0 and if B(t) and

C(t) are continuous in t then

lim sup *j(t) - N,0(t), = 0.N-loo tE [to0,t ]

We draw the readers attention to the fact that all convergence results

were obtained avoiding any specific information about the adjoint

evolution operator or its generator. This is quite important, since

the properties of the adjoint evolution operator are unfavorable to

constructing approximation schemes: if .w(*(t) denotes the

infinitesimal generator of the adjoint evolution operator, then

n Dom(* (t)) need not be dense in Z
t>to

(see [4]) and for autonomous (FDE) Dom (f) consists of all-elements

.MOW
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(n,O) E Z with 4 absolutely continuous on [-ri,ri-l), for

i 1.....,Z, and with jumps at r. determined by A*. It would

N
therefore be quite difficult to find a sequence of operators T*(t,s)

satisfying properties analogous to (Hl) with TN(t,s) and T(t,s)

replaced by T*(t,s) and T(t,s)* respectively; indeed we shall see

shortly that ZN c Dom(_;((t)) is a very convenient property for

showing that TN(ts) converges to T(t,s), but the analogous hypothesis

zN c DomCLe*(t)) would rarely be satisfied.
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3. Spline Approximation Schemes

In this section we apply the results of the previous one to

subspaces of spline functions. There are three subsections:

(a) Generalities, ( ) Linear-spline-functions, (y) Cubic-spline

functions.

(a) Generalities. Spline approximations for (FDE) have been developed

in [3] and we shall use these results here. Throughout, we assume

(2.3) to be autonomous, so that Ai , i = -1,0,..., are independent of t.

We recall that in this case the solution evolution operator becomes

a semigroup via T(t,s)z = T(t-s)z for z E Z and (t,s) E A, whose

infinitesimal generator ji is given by f(0(0),0) = (L(p),'), where

Dom(_Q) = {(n, )I c E Wl 2 (-r,0O Rn), 0(0) = n}. We specify a

weighting function for the norm of Z by

g(s) = j for s E (-r _j+l,-r _j), for j = 1,...

Obviously Z1 and Z are equivalent Banach spaces, sinceg/2
n,0)1Zg 5 (no)z I < (n')jzg. We continue to drop the

subscript g if only the set-theoretic or topological structures

of Z are important. Next, we repeat a general result from [3],

-- - -- _______, _ | |__-
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and call [ZNPg9 , N = 1,2,... an approximation scheme if (zN

is a sequence of closed linear subspaces of Zg, IpN is the sequence
sqn

of orthogonal projections, PN: Z ZN and {AN} is a sequence of
g goperators Z g ZN.

N N

Theorem 3.1. Let {ZN ,P, be an approximation scheme satisfying
g

(i) zN c Dom(-Q), N = 1,2,...

(ii) _N = PpN, N = 1,2,...
g g

(iii) (a) lim PNz= z in Z for all z E Z,
N+. g

(b) for some integer k > 1 we have

lir L(N L() in In and

lira ( N ),I=' in L 2  for all ' E Ck  where
N-w

N N^ N N'N  is defined by PNV * (0),0N),g

Then each N is the infinitesimal generator of a C0 -semigroup

TN(t), t > 0, such that

TN (t)zN ZN, N - 1,2,..., t > 0

lim TN (t)z = T(t)z, in Z
N-*

and

JITN (t)IIZ 9 W JIT(t)II z  < o'

g g

where

L0- L+ oiii 1 11 1 lu.°
+ IIA(s) ds.i+l 

-r
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We carefully avoided -V*, the adjoint of -P; however we shall

need

Lemma 3.1. The infinitesimal generators (N of (TN(t))*, the

adjoint semigroup of TN(t) generated by Ngiven by

Dom(CO) = Z

and

NpN

Proof. Since -QP is closed and defined on Z it is bounded; there-

fore pN pN is bounded and so is (PN.pN and Dom(PN N 2.g gg g

The second claim follows from general semigroup theory 110, pp. 277.

We need one more condition on the subspaces ZN:

dim ZN = k < c and
N

(H4) for each N = 1,2,... there exists an integer i > 0 such that

ZN c N+V .

We now turn to a discussion of the variation of constants

formula (2.9), the feedback laws (2.13) and (2.15) and the Riccati

integral equation (2.17); the assumptions used in the rest of this

section are (H3), (H4) and the assumptions of Theorem 3.1.

The fact that by (H3) the columns of QN are in ZN, together

with (M) and T N(t)zN c imply that for each N there exists

an integer p such that the right-hand-side of (2.9) is in the

finite dimensional subspace ZN+P and therefore,
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(1 N't) =-QtN+4z Ni(t) + QNB(t)u(t), t o < t < t

zN'P(to) = pN+.tZ

By a similar argument we find that H N,P(.) satisfies in ZN+P

the Riccati differential equation

MN,(t) _ N+p*,NN P N, v W N+I
dt W()+H (

(3.Z) - L@N+p(t) - 11N, (t)?N(t)C I (t) ) (t) IN ' (tI

for t o . t<t*,

n , t . 1 = FN .

We also recallthe feedback law

(33) uNNt M -C'It cM )ctIN'cRs'C (OR g

where SN'p(.,t )PN+P z is the optimal trajectory corresponding to

To approximate (P) by the finite dimensional problems

( 9 N, t) we yet have to express the various operators in (3.1)-(3.3)

with respect to some bases in ZN.

Remark 3.1. For the reader, who cares to follow the calculations

carried out in this subsection, or the potential applicant of the

resulting finite dimensional linear quadratic control problem, it

might be helpful to think ofln-vectors as n x n diagonal-valued

matrices.

r____
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For each N = 1,2,... we ncw choose a basis ($N

of ZN. From ZN c Dom(_/) it follows that N= (),ON )  for

N k wh
- 1,...=,kN' with i E W We shall need the matrix functions

N= (SN'...,kN)

and

N N NN

Each element zN E ZN can be expressed as

zN = N . for a N = col(C Nl...,ac E A
1 k N

or in terms of elements as

SkN N kNN NzN  N ai  OL.
i=1 i=1

The matrix representation of _VN: ZN , ZN, denoted by AN and the

coordinate vector of PNz, for z - (n,O) E Z have been calculated

in [3]. To present this result, which is a simple consequence of

PN(n,O) (n,o) -L ZN, we define the matrices

JN IT'> def o()*Oo) + Jr 0(s* s)g(s)ds

g.

hN(nN) - 4Nn,,)>Zg def 0N(0)*n + 0- N(sl*0(slg(s)ds
-r
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and

(3.4) H N hN CL(N),gN) =BN(0)*L(ON) + J8N(s)%N(s)g(s)ds.

Then, if P (n,4) = 8NaN, the coordinate vector aN  is given by

(3.5) CN = (JN)-lhN(nf)

and the matrix representation of -W N  by

(3.6) AN = (JN)IHN

If for any N, one choses P satisfying (H4), then the columns

of QN are in ZN+ p  and there exists a vector 6N,
' ER k N +P

such that

(3.7) QN = 6

Since we think of the approximation in N as chosen by the user

according to some desired accuracy which can be achieved by fixing

N sufficiently large and then by letting 0 - c, the following

formula will be useful

(3.8) 6 N,j (jN+p) 1 +,NAN NO.

Next, we turn to (QN+I)*: ZNep . ]Rn. For =N+u

(*N+,( 0 ) ,N+,} C ZN +P define yN+4 k N + j, and n EIRn by
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$N+U = -N+yN and (QN+U) *$N+I =.

Then for all x E ]Rn

<QN+Px,'N+u> = (x,(QN+U *AN+
g

or, equivalently

<0N+'6N,Px, ^N+pJ N+iA

g

We use Remark 3.1 and easily deduce

(6 N,)* jN+P y N+P =

Therefore, the matrix representation [(QN)* of QN* is given by

(3.9) [(QN)*] = (6N,,I)*jN+i . (6 >
g

N N N* *
Let AN denote the matrix representation of (PgN WPg) , then

g g

(3.10) AN = (JN)-I(AN)*jN.

Indeed, let A ((0),J) E Z and =((0),) E zN be given

by

and aN0 N, for PN E N N , kN .
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Then the equality

.pN N *- A N N<(P ) g$')>z = V' g Zg

implies

<NA N, NN> N N AN N N
Zg g< P , A a >Z

so that

k NkN
i AN N i,jpN N'v- VZ

N N vi

<=l v v  itj J '

which upon interchanging v by j on the right hand side becomes

kN k< N. N> pN N kN "N
Oi" V Z (A*~~ P a =  3'8i>Z (AN)i "NaN

i,j,v i v Zg (9j~v g (A

Since * and ' are arbitrary, the last equation has to hold for
all vectors pN and N , and therefore

kN kN
E <N' i> N (A*) 8. >(A )i,v for all j and v=l,...,kN .jil 1 g i~l J 1 9

This equality implies (3.10).

We notice, of course, that if 1',...,9k were an orthonormal

N N *Nbasis then AN  would equal CA ) To find the matrix representation
(DN(t)] of .9N(t) - N we let = ($N(0),$N) E ZN and

-- i 
9 

I . . . .



define aN ERk N an N EAk Nby3

= ~~N and ~N NN N

Therefore

N (t)j = pN (t)N = pN(Dt)tN~o

and by (3.5)

YN =(JN lhN (D(t)ON (0),0)

But

hN(D(t)oN(0),o) = h (D(t)$ (O)a 0~) =N N(t

where

5Nc(t)= l 0*tON0)

so that

Y (N )- lN(t)CIN

or

(3p.11 
D ] NlNM
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In a similar manner we see tha+ the representation [F ] of
FN N N
F P gYPg is given by

g g

[F N] = (jN)-l FN

where

(0)*F8N(0).

To write equations (3.1)-(3.3) in terms of the coordinate repre-

sentative with respect to the basis chosen, we let lN'i (t) denote

the matrix representation of the operators HTN'P(t): zN - ZN and

let wN',I(t) = wN"'(t;u) and wN '  be defined by'

N,P (t N+pwN,11 pN+j =^N+P.wN,il
z (t) I(t) and g z- 0 N0

Then (3.1)-(3.3) are equivalent to

wN9II(t) AN+IwN'V(t) + u for t o < t < t*

c3.~ (t 0 'C
(3.12)~ dFIN~t1(t) = n+1N,p(t) + nN~1I(t)AN+p

[DN+4V(t)] - N t) 6'1B(t)C(t)B*(t)N, * jN+~rN, i(t)

N,I' (t*) = [FN+p ]

u N ' t Mt = - C- 1 (t) B* (t) 6N '  "*N+11N,11 (t)w N .11 (t).

We close this subsection with a final remark on the choice of the

operator QN

'V --
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Remark. The natural possibilities of choosing QN are to
(a) either take QN NQ

g= PgQ0 which by (3.5) implies that

6N,O = (JN)'I1N( 0 )T

(8) or, if the subspaces are chosen as spline functions, to

take the representation of QN: n _ Z as the interpolating

spline, which at the knot t = 0 takes the value I

(identity matrix) and 0 (zero-matrix) on the other knots.

The choice between (a) and (8) has to be made on the ground of

getting the best convergence for (N,QN). Condition (H3) is

checked in essentially the same manner for (a) and (8).

(8) Linear spline functions.

We begin this subsection with a brief discussion on the rate

of convergence of the approximating semigroups TN(t) con-

structed in Theorem 3.1. In [31 it is shown that general semigroup

theory provides the following estimate:

There exists a constant M = M(t*,AiXO) such that

(3.13) I(T(t)-T(t))zI < M{I(N )Z + J +

+ I[(N -_( T(t)z)}

for all t E [0,t*] and z E Domcqe2 ).

i i ! i t
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To give estimates on the rate of convergence for our problem we

use (3.13) together with results from the theory of spline functions to

estimate N - -Pe. In spline analysis the estimate on the rate of

convergence of an interpolating spline always contains higher order

derivatives of the function that it interpolates. This constitutes

an essential problem for choosing QN and estimating P(N,QN ), since

(11) does not allow to pick the representative of QN arbitrarily

smooth.

Although estimate (3.13) (which was derived from general semigroup-

theory) might be too weak for the special case of (FDE), it nevertheless

clearly indicates that the jump operator Q0 needs extra treatment.

For spline approximation of neutral functional differential equations

this has turned out to be essential, both in theory and in numerical

work [7].

For the rest of this subsection, we choose 1 = 0 in (9 N,1

and let N = 0,1,2,....

We denote by N = {(0(0),0) E _J9I first order spline
wihkosa N tN =  r

with knots at tN, j = 1,...,N}, where t -j 1 , j = 0,...,N.

N
P Nstands for the orthogonal projection

Zg - Zl, N = 1,.... It is proved in [3] that the approximation
scheme NZ P N  N

scheme {ZI, PLPP1} satisfies the hypotheies of Theorem 3.1 and

that dim(ZN) = n(N+l). Therefore, for each z there exists a real-

valued function pl(Nz) such that

lim Pl(N,z) = 0 and JT(t)z TN (t)z < l(N,z)-

-- -
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This and the estimates to follow hold on the interval [O,t*].

By Theorem 3.1 and the above inequality, (Hi) is trivially satisfied.

Using the triangle inequality, interpolating spline functions and

[14, Theorem 2.4] it follows by a simple density argument that

NN

(3.14) IP1 z-zj 1 I(N, z ) , with lira PI1(N,z) = 0,

so that (H2) is verified. Moreover for all z, the operators QN

are chosen as

N NN1 = PIQ0

or in terms of their represenation

N 0)
CQ ) N PlN(ejO)

where ej, j = l,...,n stands for the n unit vectors in Rn, and

0 for the zero function. (H3) (i) holdstrivially and a short

calculation gives

(3.16) a1QndQ011 Ann z) i '(el' '

and
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Thus (H3) is verified.

Finally

(3.17) N(NQ = I IT(t)Q - TNQII1

= N T(t)P1Qo- T(t)Q 011 + IIT(t)Q 0 - TNPJQ0 {I <

( ewt IIP1Q0-Q0 + r max(Pl(N,(ei,O)) +
e.1

+ e P I(N,(eiO))) <

< 2 e t*/n(max oi(N,(ei,0)) + max l(N,(ei,0))).
e. e.i 

i

Estimates (3.14)-(3.17) are exactly those needed for the convergence

results of control, state, payoff and Riccati operators in

Section 2.

By (3.13) we know that on subspaces of Z, determined by

Dom(sfk), k > 0, Tl will actually go to zero with a rate given by

convergence of the generators. But this is always at the expense

of Pl not only depending on z but also on (at least) the

Lz-norm of its second derivative. So even if we dispense of (H3)(i)

for a moment, high order convergence of IIT(t)Q 0 - TN(t)Q 0 11 to

zero seems quite unlikely in the light of Remark 2.1.

(y) Cubic spline functions

In this subsection the general results of Section 2 are used to

discuss subspaces ZN of Z given by
3
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N= {N(0),$) E _W21 0 is a cubic spline with knots at t, j = 0,...N1,
3 J

where again tN = -r j, j = 0,...,N, and PN: Z - Z are thej R .. g 3

orthogonal projections. It is quite simple to verify that the
N N N N =N N

approximation scheme Z 3 ,-W 31 with -Q(= P3-QfWP 3 satisfies the

N
conditions of Theorem 3.1 with dim Z3 = n(N+3) and that for P = 0

we can derive results similar to subsection ( 0). (Hl) is therefore

trivially satisfied. Here, however, we restrict our attention to

the question of rate of convergence on subspaces of Z.

For k = 1,2,... we introduce

k = {((0),@) E 2k,2 E Wk+1 , 2 0(i)(0) = L( ( ' 1 ) ) i = 1,...,k}.

Notice that 0 k is the domain of the infinitesimal generator of

the solution semigroup of the autonomous equation (2.3) if

considered in the Banach space 0k,2 (with its natural norm).

In particular, this implies that

!k is dense in k 2 ,k 1,2

Moreover,

if z E k then z E Dom(Jt

In (3] it is proved that for W 0
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(3.15) ITN(t); - T(t)j < T(N, ) =OC3)

for P E °., where O( N) depends on (4), and from [14,

Theorem 6.9] it follows that

(3.16) IP N for E1 E W

Therefore, for E E

(3.17) P(N,P) = O(-).

We define the operators approximating Q0  by

A ^ N N N0)QN)

where QN is the n x n function-valued matrixQ3

N

s3
Q3 = o

Ns3  can be chosen very conveniently as the unique C 2(-r,01R)

function, given by

* i ) a 0 for j -,.,

sNctN) a 1.

J . . ... ... ,0
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Notice that this choice of s3 lets the diagonal of the repre-

sentative of Q become a basis function of ZN (possibly after

multiplying with some scalar) in the commonly chosen de Boor basis.

The function s3 can be explicitly represented as

I( 13 Lr3

N(t+L J for t E - r
s3 (t) =

0 otherwise

and a short calculation yields

(3.18) PQ(N) = [Q 0 - Q 11 nZ) 0(!)

and

(3.19) j Q0- PNQoII1_VO n , Z) 0

^N

The special form o Q and (3.18) imply (H3)(i) and (ii). (H3)

(iii) is verified easily. If P+ N is some multiple of N then

(H4) holds and (H2) is a consequence of (3.16) and density of
V32 in Z. Finally bounds on p(N+ ,QN) are given via the

following lemmas. For $ = (O(O),#) E _W let fN denote the

interpolating cubic spline function defined by

N N(f (t.) for j 0.

(*I)' 0 } - (,N)'(-r) = 0.
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2Lemma 3.2. For all = (4(0),4) E 2 we have

(3.20) 30- 3 0 ( ,)10( 2

N L

where 0(1--) depends only on L and *(3) denotes the third
N'

derivate of 0.

Proof. Since P N is an orthogonal projection
3

Proo 6 0Smine
IPsra-= in Iz -- s < /q I(¢)i - I2'

3 g zEZN Zg L 2

3

where we used the fact that 0 E 91 and rl is a consequence of the

weighting function g. The last estimate, [14, Theorem 4.5] and

E _2 imply

N M, 0(1 =  c)q(3)l,
(3.21) Ip 3 -V - 7 2

NL

We now turn to estimate jrPN _ st and let PN4 = (N (O),ON).

Then

N_ 2 < I -NIL 2 + I(CON-)'I
1( )1L 2 I5 T LI2I L2

<_ C NI N_-, NIL + 0(l Iq C(3) I 2
1 1 L 2  NY L2

where the first term is estimated by the Schmidt inequality

[14, pg. 7], the second by [14, Theorem 6.9], and C1  is a constant

independent of N and 4.
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The last inequality implies

(3.22) ID(ON-O)I L2 = O(1 )10(3)1 L2

L N1

A similar calculation gives

sup I (s) - 0 (s)I = 0(-)JO (3),
sE[-r,O N L

and therefore, since L is a bounded linear function from

C(-r,0IR ) -R} n

(3.23) IL¢¢)1 < 0(1-2)10(3), 2.
N L

(3.21)-(3.23) are used in the final estimate

Qf?- I< 1&3O iV01+I 3 Q -StI

<QP3 0 3_ St I7N$__-- j + IpN /-$_I1 0( O!)10(3)I
NL

which ends the proof.

Lemma 3.3. For all N, and t E [O,t*]

I (T'(t) - T(t))Qj = 0( ) Is N
3Y n ;Z) 3 ,2 (-r,O;M)

Proof. For an arbitrary J let N (qNco),qN) 3 (QJ). Notice

t N 32 n 3
that q E W '(-r,O1R ), so that by density of in
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W3 '2 (-r,O; R) there exists a sequence of functions qn E

such that

^ ^N W3,2
(3.24) qn - q  in W

We turn to estimating IT'(t)qn - T qn I first. Since qn E W

there exists a constant kl, depending only on L and t* such that

(3.25) IT(t)q IW 3 < kllqnlw3, for t E [O,t*].

Using the fact that qn E it is easy to check that

(X 0 I )qn E g2, for some fixed X 0 > . Therefore, there exists

another constant k2, depending only on L and t* such that

(3.26) (t)(X n 2 < k2n32

If we use (3.25) and (3.26) together with (3.20) in (3.13), we get

- T(t)n O(n)1I qn13,2,

where the 0(! )-term is independent of qn and t 6 [0,t*]. The

last estimate, together with

IT-(t)^ T(t)4 NI < IT"(t) N TP(t)^n1 + IT ()n - T(t)q

+ IT(t) - T(t)1NI 5 2e qqt* N I +

1 ^N
+ ( .Z)l qn- q I 3,2,
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which implies the claim.

The estimates (3.15)-(3.19) and Lemma 3.3 are exactly those

estimates, which are needed to apply the results of Section 2, and

essentially establish that cubic spline approximations to the linear-

quadratic optimal control problem (P) are O(L-) convergent for

trajectories, controls and payoffs, if the initial data are chosen

from certain subspaces.
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4. The Averaging Approximation Scheme

When applying the results of Section 2 to averaging approxima-

tion schemes, the approximating state - and Riccati equations are found

to be of particularly simple structure; moreover for the class of

problems under consideration we find exactly those equations approxima-

ting problem (P) that were first proposed in [131 and [15]; they

were also derived in [2], and convergence proofs for controls,

state and payoff are provided in [1].

For any positive integer N we partition the interval [-r,0]

into the subintervals [tN tN I1 with t -i for j 0 N

StN tNLet N denote the characteristic function of ft j 1) forN N N

j = 2,... ,N and xN is the characteristic functin of [t1,t ].

Then the averaging approximation subspaces ZN  of Z are definedav

by

zN fl" = NN N E]R nl
NNN

Z~a = {(n,¢)[ in E1 n, € ~£v. ' j., }

We note that (n,O) E ZN for each n E IRn. It is simple to' av
Nz

calculate the orthogonal projection PN : Z Z ; indeed forav av

(T, ) E Z we have

N N
(4.1) p N Nn € =  . N N

• av jil jXj)

N

where N O(s)ds.
r t N

A scheme for approximating T(t) using the subspaces ZN

av
has been derived in [1]. This "averaging approximation scheme" is
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described next. Again, we assumc that the matrices A. in (2.2)

are independent of t and define a sequence of operators

N N by
-av Z+Zav

N N N NN
(n,f) = (AOn + I A ( r N

vi--i j--I 1 3 3 j-l i j ' j~lr (j-1 )

where
N tN

NN N j -  
N N 1

0 n, 0N= - *(s)ds, and D. N  I A(s)ds, j 1,...,N.j r f Nj r t N

J J

It was shown in [1] that

if we fix the weight functions P 1

-(av generates semigroups T (t)savav~t uhta

N <~ ,

IIT v(t)I < for t > 0, with M* M*(Ai) and

*= W(A i )

(4.2) TN zN a ZN

av av av

limP Nz = z, for all z E Z,
N av

IT(t)z - N Ct)zI < T (N,z) with lir Ca(N,z) = 0,N av

for t in compact subsets of [0,-)

so that (Hi) and (H2) of Section 2 are satisfied. The operators

QN are chosen as

(43) QN N

which, of course, implies that (H3) is trivially satisfied. By (14.1)



we also have

(4.4) F N = 2N - 2 and _qN = Q0 B.

Now the estimates of Section 2 can be applied; for the optimal

controls, for example, we get by Corollary 2.1

2. 0 K av -7 [ (N,Q )v(Niz)],
(4.5) L2(t 0,t *v RM 7[av QO IzI + pa

and similarly

(4.) S~~z- N,O tN z Kay a
(4.6 JSt~z- Sav (tPav -<8 [av (NQ 0 ) Izl + pa (N,z)I,

for to < t <

(4.7) I<n1(t)z - 11NO (t)P N <y' Kv [P (N,y)lz9 v Izi
+ P av (N,z)Jyj + Jyjjzt (N,Q0 )]

and by Theorem 2.2

(4.8) ~J(t0,P N~ )'f N J(toz,i)j < v[ (~~z + (goll21K10[Pav(Z)I avI

so that in view of (4.2) convergence of optimal controls, optimal

states and payoff as well as weak convergence of the Riccati operators

is guaranteed.

Finally we give the form of the approximating state and

Riccati equations. We use e N ... ,eN defined by
0 N
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N N 0,N )

e 0 = (1,0) and eN = Co , j =

N N N
as a basis for ZN . Since TN (t) leaves Z invariant, (2.9) isav av

equivalent to

SN,0 (t) N (t ) + (B(t)uN (t),O)= av z

(4.9) j zNO(t 0 ) = av ( n ' ) 'I a

which, in turn, is equivalent to

N(t) = ANvw N(t) + col(Bu N(t),0,...,0)

(4.10)

wN (t ) = col(n ,N,.. N

N,0 () N N N, N
where zN(t) = wN(t)e, *N is defined in (4.1), and

j=0 J '

r N 0... 0 r N A + N

A0  ND1  N N. 1 k DN- N

N -N 0 ... 0 0
r r

AN= 0 I -N ... ... 0

av r r

0

0

r r

here I is the n x n identity matrix. If we let n N denote
• av

the matrix representation of 11N0: ZN ZN, then we find by

(2.17) that nN satisfies an [t0,t*] the matrix Riccati equationav
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d TN(t )  N *N ( N (t
Tt- a v( a= -( a ( aw tAav-[D

av~ l [ ) ] ' B t  av

TN (t) = F],
av

where (A N denotes the transpose of AN andav av

[D) D 3, [F] = [ , [B(t)] = col(B(t),O,...,O),

[D] and [F] being of dimension n(N+l) x n(N+l) and [B(t)] of

dimension n(N+l) x n

The optimal feedback law becomes

(4.12) u N(t) = -C 1 [B(t) ] *7 av(t)w N (t).

Equations (4.10)-(4.12) completely desribe the approximating linear

regulator problem on the finite interval [t0 ,t*].
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5. Proofs.

In this section we give the proofs of those results tLat were

not verified in Section 2. In addition to the conventions specified

there, we let P Nz = zN  for z E Z and N = 1,2,....

Proof of Lemma 4.

(a) We use (2.12) to find the following estimate for WN oto 0

IW,'" z(t)I m = (_N(t))* f t (TN , (nt)) *9Ni (n)TN,+l (n'to)Z dnl +

+ ICLN(t))*(TN+U(t*,t))* +PwTN (t*,to)zI <

< bqtt 2w(t*-to)-,

-2 w(t*-t0) 2 i(t -t 0)
+ bqf 2e IzI = bqM e Izl(d(t*-t0) + f).

(b) The conditions on C,D,F and (2.11) imply (b) after a short

calculation.

(c) For t E [to t*] we have

*

t(WO z)(t) _ (W,,zN+)(t)Im IW(t)*J T * (f,t)()T(r1,t0 )z dri -

_N (t) * t T"~ (nI, t) *gN I (n)TN (,,to )z N iUdnI +

*t

+ j.0(t)*T(t*,t)* T(t *,t0)z -

- N(t)*TN +4 Ut*, t)*FN+vT+IJ(t*,t O) zNhl1 I

- IIw(t)I + lIIw(t)I.
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The terms I wand 11I are now estimated separately. Let

T(t) =sgn Il (t), then

JR JR ~t0/

-(ft TN11t*N~l ni.N'(~tiid "OIN ) =t

-(ft nt*9n)(ltz dr, (_q(t) _ _N(t))T(t)) +

+ (f'TN+(nt)*(n)(n) - ft ~)TN"i(nt)z(TN+"n~t~NdN(t)(t)) +

t

ft )(_t) qTNI(n)N1n 0 zd,4(1t
t

*+IR f te(n ) egl(n t)zI dTn bPQ Nt)) 94rnt)N~ +
t

*
"(t<n(~,t 0)zI+,() o)zN+' ), Tn~ti N T()>zd

" t<On - 9N"~(n.)).N+I(nt)zN" 4,, (n,t)_V (t).,(t) > zdn.<

"b dvWM92zI PQ(N)(e2t to-1)(29)l +

" bqd*W R(e Ut -)wZ- [P(N*1A,z) + (NnI,QN)zI] +

" bqdvii R2(t*_t de Z(t- 0) (2U)f1Izi IIP"'"Q 0-%tt.

Let e(t) - sgn 11 W(.t), then
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_4(.(t) T(t*,t)* T(t*,tz (t) *T(t* ,t) .T(t*t 0)z, e(t)) +

+. (QN (t) *T(t*,t)*yFT(t* tO)Z N N(t) *N+1 (t *t).*-N+1J(t* t) zN9iJ e(t)) +

+ . q9. TN1 (t* ,t) *(#vN+ (t* ,to)z N+,- FN+,1J.I.N (t*,t 0)z Wi, e(t))

<T* t*,t)-9T(t*,t)z, (_~t -_ (t))e(t)> +

+<Ft*tz T*,t N (et)- FN+ 1 jt*O N41% TN41e(t*tq te > N

+ y p+,)N+,(*,tOzN+p 0 ,"t, )_?N(~~)

biizj- £aT(t*-t 0 )
bfHIIMe PQ(N)+

* <9Tt~tt t T(t* Ntet)

* _I4VC* tOz ~j (~. )_ + t*t).g Ntet)

+ I I Y-PN+i'9 I I We 2 ~*t)bq,& IzI <

bfvH)z) R2e 2(t -to 0 ) +

+ bqv~fflfM eW(t -to) [P(N+ii,z) + jz1 (N4Vl,QN)] +

+ bq,ij1 IR2e Wt to0 f1 ,pN+,IQo 1 .

The two inequalities together imply

tep UIw~~ + +1wW 
w ')

+ f eiiU(t*t0)J j +P(N+P,z)bqvi 9[d(e 0t-t) I)Gl + f e a(t*to) +

£Zct*-t ) 2l+ Zi(t*-t)
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Cd) For w E L 2(to' t Rm) we next estimate

tt
+ (t*T,t)*.(rft T( a-qa)w(a)wdc dp

to
+ Ntt)*ft (nt) **NIIn ) ft TNna)_A(no)NwI)d =

t to0

1Vtl + 
Vivtl

II~()I =(_4(t)fT(t*,t)*9f T(t*,oY)(owod-

N(t) *T(t* ,t)*.9Jr T(t*,a)_qN (a)w()daY, e(t)) +

to0

+ OqN()Tt,)-r ~*O)V awc~a e(t)) -
to0

N *...N+U**t 0~~i*

(.QN(t) *1 (t*,t)*5 FN+P ft (TNa)(t*(N)w(l~ , e(t))
0

*<T(t t)*9rft T(t* ,oJ.-QCCvw(oCFdG, (_Q(t) - VN(t) )e(t)" +to0
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tN N
+ <T t t).,-jT(t*Po)(-() - 'q (c))w(a)dG, .9 (t)e(t)> +

+ t (t*,U-N (~(~ T(t * t)qN(te()>

to0

- 5jftTN+I (t*aq (awady TN+(t*t)_.gN(t )e(t)> +

to

+ <(3z.-Fi): N+Jt)N(c)w(u)do, ~1+Itt (t)e(t)> <

< b 2 fr R2 (1+q)P(N)e w(tt) 1 - (e 0-1) 1121w1 +

+ < t ~t*cy)qN a~wcy~~y,(T(t*,t) -TN+"J(t*,t)) IIR(t)e(t)> +

+ < Ff (T(t*,a - TN+J(t*))N()da TNPt,)q~ N et)

t0 2 ~ t0 gt- )11/2

+ I -P"+"Y Ib q2  g2e(tOE wL

2w L

+ %I2qfvWi 6(Nue QII~j 2 .7~ t0-1] + e (t*-to) (t *+o)

11Q 0 -pN+JIlfb2 q 2 W We (t to)fe 2Ut-Olj 112i2

Finally, with v(t) *sgn II v(t) we get
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II =(I IV(:t),v(t))

(t * f Tt*-9 ff T(n,a).q(o)w(aY)dOdn -

t t 0

( N~~ f T~N~t*ln)(n't*N+a(q) n )do n -j~ywa~ov

-4 MN * Tfn )*9()i T(,)(o)w(a)dd l v )

0

( N * T Nt) JT(1,t)*-(ri) JT(n,a)_l ()w()dadn, ~)

t0

(t) * Jtl nnt)*((r))

-~4I (t Jt TN+I(,)..()W cNdd(n, v()~) dqnvt

to

T9N+ (n) J T1(nl,Ga)(l()w())w7dn, .(~vt)>
tt

N No

4 'J T * (,t)j() f J T (In, 0)-4 (cl)w(c!)ddT), (_Q(t) - -O (t) v(t) > +
t to

+ft V90(1 f(T (ri, a) Tntc))_qN(C)Wc)dv 7N'4L,t)MMN.t)v(t>)dl +q
t to
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+ <00 J' (Tcn,CF) - N1n,)4NGWGdy
t0

T+iA(n1,t)-qN (t)v(t)>)dl +

<90) - .9N~p(1)) f n 1 IA(1dY

<b2dvii i 2PQ(N) Iw 1 2 [ e 2wt -)1 I+q) +

t 0

+ t t 0 lp

t ftQ0 P~' 0  0 M2,AJ(TIO)b Q lw(u)deg(nt)rndr

" b2drj K?2 P (N)IwI 1 3e2Ut*-t0 ) -]Jq

2 2Rv (e -l(q *+

+ d jjq 2I;, P(N+uIQ) IJf f ne!5(nflc) Idadn + ft ff e(f)I()io

0

* b2dvW Rp(N)IwI 2 2U~t*-t0)-1+) +
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" d 2q2-vr-P(NP 4)'W 271e (* 0 ) + (et0)/

db q 2 [w (e t~j

+~~~~~~ abq I A 1 p +L Q 1 I I [ 3 ( ei ]

The bounds; on Ivand 11I imply

_V~

SUP * J((Vo XVN I
tE[t0 ,t 1 00 ()

P P(N)b 2(1q fw + d je 2E(t*-to) +

N2, /2 7w7 /

+ P(N.IP,Q~ 0 1,L2f(- (t-_t0 )) )+

+d( 1-- * __0)_1/2 w(t *-t 0 )

+ (IQ 0-PN'%Ilb 2q2 i 2 0W twI 2 d e 0t-O- 1) f e- ett0j

This completes the proof.

Proof of Theorem 2.2.

(a) INutsN~I if TY'+(t, RO (-) W""N.z") CTi)drI
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<R_ (u5t t0) iN+p, + fe Z(tt 0)b 1t. / 2  11 (*t)/ 2 KjN+pj

(b) IS(t,s)z S sN ' p(t,S)PN+zi < JT(t,s)z - 9+"(ts)zN+Pl +

Is ftT _4f)(r)(V Wz)(rl) - T(t n).9(n)(N , 1w; 1zN1I(nsc

+ TN,

-TN~ itn.N ((VNdflWN,ljzN+1) n))dn <

< P(N+Vi,z) + JiReii(t n)1 VIVz) (y)) _ ((Np Wiz~)()Id +

+ b tfIT(trI)Q 0 - N+IL(tn)QNI12 d 12( V, W~ Npn) 12 d /

*P(N+Pi,z) + b ~ fe2w(t-n)d +1

* b J I IT(t,n)%o - T(t,n)OQNI 2)nl 1/2 +

+ (It1I ;T(t,,n)QN - TN+ (t, Onflj 2 dTj2c-'IzI K1 t-o)/

5P(,N4u,z) + bl;N p1 1 (e29(t*-t0)- 1/2+

L 2w

4001-
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+ bc1 II z IKft*-tO) 1/2[M(N)(J e N(t- l) di)1/2 + NPNt* 01

=P(N+iA,z) + bliiiiP (L (e 0  1)) +

" bc-lizKl(t*-t)/M-p Q (N) L( (-t *Ot 0) 1)1/2

" bc-ljzIK I(t*-t 0) P(N+ll,QN)=

=P(N411,z) + (N+lI,QN)IzIK 6 + la-0£iNI 2k 5+ IzIPQ(N)k 6 1

where

K6 =bcl 1K 1 (t*-t 0)

k 6 = bclK1l(t*-t) 1( (e 4)

Proof of heoremn 2.3.

(a) By (2.13) we have for t F [t0,tJ

In N.1A(t)z N+I 5 ITN £(t*,t)*FN+ps,Ii(t*,t)zN+jl +

< R M te fK5Izl + 6Me *t0 dKSlzI(t*-tO).
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(b) <ll(t)z - I It)NvY=<T(t*,t) * 9S t*t)z -

- TNtirt-t*NIS~~*tZ4,Y 
+t

+ ft(nt)*(n)S(nt)z -

<YIS(t*,t)z, T(t*,t )y _ TN4(t,Oy + <-FS(t*,t)z-

-t <,~I t t) ZN41 , l,",(t* ,t) Y>

* < (FF )SNI,(t*,t)ZNi IN1I(t*,t)y> +

* J <9n)N'ntz T(n,t)y - TNnI (n,t)y> +

+ f *,'9n N ntzNp- -gN nSN1i(t)zN1194+.(t) dn <
t

< fK5IzIT(N+I,y) + (f+d(t*-t))[geIe t I A (P(N+.a,z) +

+ (N+J,QN)IzjK 6 + _U~3Nt L2 k5 + Jz IpQ(N)k 61 +

+1fN1f1CQ 2( * 1W tO) y + dKsIzI(t*-to(N,)
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wG(t*-t)

[ f+d(t* t0 )][K5Iz(N+p,y) + K5M e 0IylI I -IQ0 pN+li Q01  +

+ Me~~0 IyI[P(N+Pz) + (N+pi,QN)IzlK6 +. u~~,J L 2k + Iz IP Q(N)k 61].

Proof of Corollary 2.2.

IJ(t0, pN+jz,ei,j) _ J(t 0 ,z,)j

= l<FN+p z N,p~ (t*),z N,p (t*)> - <Y5pz(t*),z(t*)>l +

+ tj<4+(tN~~t)zN~ (t)> _ c<(t)z(t),z(t)>Id.
fto d

" tj.J+1JNPJ* ,N,jt)*

"<NP-zN'p(t*) - 9z N Clt*),zN (t *)> +

" (Pz ~u(t*) - z(t*)), p 1 zl (t*)) +(FP lz(t*), P1(ZN (t*) - z(t*))) +

+ t N0.t)ZNNj't-,z~ jj t)> +

" <_9Ct)(z N,i'(tM - z(t)),z N)IiM> + <z9(t)Z(t),zNI(t M z(t)>jdt +

ft 0JPI~ - uN,~ (t)),Ui(t)) + (C(t)uNI1 Ct),U(t) u- t)d
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((t* t 0)d+f)K IzI{2[p(N+1J z) + (N+ii,QN)IzIK 6 + Ijj-jNI L 2k5 +

+ IzIPQ(N) k6] + JIPN'%dQ~QhK 5 IzI1 +

+ a 21 jN,P1  11K~~tl2 rct)I z,

which completes the proof.

Proof of Theorem 2.4. By Remarks 2.4 and (2.10) it follows that u is continuous.

Moreover by (2.15) we have

IU-(t) - U:jNO(t)l = IC(t)- 1 -(t)*(ni(t)S(tt 0)Z - H NO (t)S NO(t,t 0)pNz)I.

Let EN (t) = sgn C(t) l-(t)*(T(t) S(t,tO )z _ IrNO(t)SNO(t,t )Pz), then

By Corollary 2.1(c) and after our inspection of (2.16) and the proof of

Theorem 2.3(b) it now follows that

16(~t) - 0jN,(0) f sup (g[(NA)Izl P(N,z)jj + I4IIzI(PQ(N) + P(N,Q 0))]

where the supremum is taken over {.q(t)(C(t)- 1 E (t0l

t E [tO9 t*], N - ,,.) a relatively compact subset of Z.

(Hl), (H2), together with (vii) and (viii) in Section 2, and a

simple compactness argument imply the result.
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